Learning Theory Estimates with Observations from General Stationary Stochastic Processes

نویسندگان

  • Hanyuan Hang
  • Yunlong Feng
  • Ingo Steinwart
  • Johan A. K. Suykens
چکیده

This letter investigates the supervised learning problem with observations drawn from certain general stationary stochastic processes. Here by general, we mean that many stationary stochastic processes can be included. We show that when the stochastic processes satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning schemes with various mixing processes can be conducted and a sharp oracle inequality for generic regularized empirical risk minimization schemes can be established. The obtained oracle inequality is then applied to derive convergence rates for several learning schemes such as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs) using given generic kernels, and SVMs using gaussian kernels for both least squares and quantile regression. It turns out that for independent and identically distributed (i.i.d.) processes, our learning rates for ERM recover the optimal rates. For non-i.i.d. processes, including geometrically [Formula: see text]-mixing Markov processes, geometrically [Formula: see text]-mixing processes with restricted decay, [Formula: see text]-mixing processes, and (time-reversed) geometrically [Formula: see text]-mixing processes, our learning rates for SVMs with gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As a by-product, the assumed generalized Bernstein-type inequality also provides an interpretation of the so-called effective number of observations for various mixing processes.

منابع مشابه

Confidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)

Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...

متن کامل

Second Moment of Queue Size with Stationary Arrival Processes and Arbitrary Queue Discipline

In this paper we consider a queuing system in which the service times of customers are independent and identically distributed random variables, the arrival process is stationary and has the property of orderliness, and the queue discipline is arbitrary. For this queuing system we obtain the steady state second moment of the queue size in terms of the stationary waiting time distribution of a s...

متن کامل

Rational Learning in Imperfect Monitoring Games

This paper provides a general framework to analyze rational learning in strategic situations where the players have private priors, private information and there is a role for passive and active learning. The theory of statistical inference for stochastic processes and of Markovian dynamic programming is applied to study players asymptotic behavior in the context of repeated and of recurring ga...

متن کامل

The Stationary - NonStationary Process and The Variable Roots Difference Equations

Stochastic, processes can be stationary or nonstationary. They depend on the magnitude of shocks. In other words, in an auto regressive model of order one, the estimated coefficient is not constant. Another finding of this paper is the relation between estimated coefficients and residuals. We also develop a catastrophe and chaos theory for change of roots from stationary to a nonstationary one ...

متن کامل

Learning Theory and Algorithms for Forecasting Non-stationary Time Series

We present data-dependent learning bounds for the general scenario of nonstationary non-mixing stochastic processes. Our learning guarantees are expressed in terms of a data-dependent measure of sequential complexity and a discrepancy measure that can be estimated from data under some mild assumptions. We use our learning bounds to devise new algorithms for non-stationary time series forecastin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Neural computation

دوره 28 12  شماره 

صفحات  -

تاریخ انتشار 2016